
Embedded Systems Design and Modeling 1

Embedded Systems 
Design and Modeling

Chapter 15
Reachability Analysis



Embedded Systems Design and Modeling

A Glimpse of Reality

2



Embedded Systems Design and Modeling

Reachability Analysis and Model Checking

 Reachability analysis: the process of 
computing the set of reachable states for 
a system.

 Model checking: an algorithmic method for 
determining if a system satisfies a formal 
specification expressed in temporal logic.

 Model checking typically performs 
reachability analysis.

3



Embedded Systems Design and Modeling

Formal Verification

4

 A system (or systematic method) to 
formally (mathematically) verify whether a 
design meets its spec in the environment



Embedded Systems Design and Modeling

Open vs. Closed Systems
 A closed system has no inputs:

5

 For verification, we obtain a closed 
system by composing the system and 
environment models
 Somewhat similar to testbench in HW design



Embedded Systems Design and Modeling

Model Checking G p
 Consider an LTL formula of the form G p where p 

is a proposition (p is a property on a single state)
 To verify G p on a system M, one needs to 

enumerate all the reachable states and check 
that they all satisfy p.

 The state space found is typically represented as 
a directed graph called a state graph.

 When M is a finite-state machine, this 
reachability analysis will terminate (in theory).

 In practice, the number of states may be 
prohibitively large consuming too much run-time 
or memory (the state explosion problem).

6



Embedded Systems Design and Modeling

Large State Space Example
 The composed FSM for traffic light controller 
 Property: G (¬ (green ∧ crossing)):

 The FSM has 188 states (accounting for different values 
of count)

 Prohibitively large state space

7



Embedded Systems Design and Modeling

Graph Traversal
 Continue with reachability analysis 

through graph traversal:
 Construct the state graph on the fly
 Start with initial state, and explore next states 

using a suitable graph-traversal strategy
 Use a common graph traversal algorithm
 Depth-first search algorithm often used as 

shown in the next slide

8



Embedded Systems Design and Modeling

Depth-First Search (DFS)
 Maintain 2 data 

structures:
1. Set of visited states R
2. A stack with the path 

from the initial state to 
the existing state

 Look for 
counterexample(s)

 Potential problems for a 
huge graph?

9



Embedded Systems Design and Modeling

DFS Approach (Continued)
 Generating counterexamples:

 If the DFS algorithm finds the target (‘error’) 
state s, how can we generate a trace from the 
initial state to that state?

 Simply read the trace off the stack
 Traffic light controller example:

 R = {(red, crossing, 0), (red, crossing, 1), … (red, crossing, 60),
(green, none, 0), (green, none, 1), …, (green, none, 60),
(yellow, waiting, 0), … (yellow, waiting, 5),
(pending, waiting, 1), …, (pending, waiting, 60) }

10



Embedded Systems Design and Modeling

Alternative: The Symbolic Approach
 Rather than exploring new reachable 

states one at a time, we can explore new 
sets of reachable states
 However, we only represent sets implicitly, as 

Boolean functions
 Set operations can be performed using 

linear temporal logic or Boolean algebra
 Example in the next slide

11



Embedded Systems Design and Modeling

Symbolic Model Checking Example
 Property: G (¬ (green ∧ crossing)):

 Assume vl: traffic light state and vp: pedestrian state
 R = (vl = red ∧ vp = crossing ∧ 0 <= count <= 60)
or (vl = green ∧ vp = none ∧ 0 <= count <= 60)
or (vl = pending ∧ vp = waiting ∧ 1 <= count <= 60)
or (vl = yellow ∧ vp = waiting ∧ 0 <= count <= 5)

12



Embedded Systems Design and Modeling

Abstraction in Model Checking
 Should use simplest model of a system 

that provides proof of safety.
 Simpler models have smaller state spaces 

and are easier to check.
 The challenge is to know what details can 

be abstracted away.
 A simple and useful approach is called 

localization abstraction:
 A localization abstraction hides state variables 

that are irrelevant to the property being 
verified. 13



Embedded Systems Design and Modeling

Abstract Model of Traffic Light 
Controller
 Property: G (¬ (green ∧ crossing))
 What variable can be abstracted?

 The count

14



Embedded Systems Design and Modeling

Example Comparisons
 Every behavior of M can be exhibited by the 

symbolic version (Mabs).
 But opposite is not true!

 Even with the abstraction, Mabs satisfies the 
G (¬ (green ∧ crossing)) property
 The value of count is irrelevant for this property.

 M has 188 states, Mabs has only 4 states.
 Reachability analysis on Mabs is far easier 

than for M as we have far fewer states to 
explore.

15



Embedded Systems Design and Modeling

Another Reachability Example
 A robot delivery service with obstacles:

 Suppose we have a robot that must pick up 
multiple things, in any order.

16



Starting
position of robot

obstacles

A possible 
destination



Embedded Systems Design and Modeling

Reachability Example (Cont.)
 How would you state this goal in temporal 

logic?

17

 The goal to be achieved:
 How can we find a strategy to achieve this 

goal?
 Do repeated reachability analysis, first from Φ0 to 

reach Φ1, then from Φ1 to reach Φ2, then Φ2 to 
reach Φ3

 Problem: What if Φ2 is not reachable from Φ1, but 
reachable from Φ0?



Embedded Systems Design and Modeling

More Complicated Example
 What if we have a robot that must pick up 

multiple things, in a specific order?
 The goal to be achieved:

18



Embedded Systems Design and Modeling

Model Checking Liveness Properties
 A safety property (informally) states that 

“nothing bad ever happens” and has 
finite-length counterexamples.

 A liveness property, on the other hand, 
states “something good eventually 
happens”, and only has infinite-length 
counterexamples.

 Model checking liveness properties is more 
involved than simply doing a reachability 
analysis.

19



Embedded Systems Design and Modeling

Liveness Checking Example
 Suppose:

 An FSM M1 models a system that executes 
forever and produces a pure output h (for 
heartbeat)

 It is required to produce this output at least 
once every three reactions. That is, if in two 
successive reactions it fails to produce the 
output h, then in the third it must.

20



Embedded Systems Design and Modeling

Liveness Checking Example (Cont.)
 The goal to be achieved:

 Reminder: GΦ = ¬F¬Φ
 Its negated form:

 It is sufficient to find one counterexample 
that this doesn’t hold!

21



Embedded Systems Design and Modeling

Homework Assignments
 Chapter 15: your choice
 Due date: any time before final exam

22


